Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Formation and Relaxation Energies of Electronic Holes in LaMnO₃ Crystal*

N.N. Kovaleva¹, J. Gavartin², A. Shluger², A.V. Boris¹, and A. M. Stoneham²

- ¹ Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow distr., 142432, RUSSIA
- ² University College London, Gower Street, London WC1E 6BT, UK

Using the Mott-Littleton approach we evaluate electronic and ionic polarisation energies in the LaMnO₃ lattice associated with localized holes on both cation Mn³⁺ and anion O²⁻. The full (electronic and ionic) lattice relaxation energy for a localized a hole at the O-site is estimated as 2.4 eV which is appreciably greater than that of 0.8 eV for a hole localized at the Mn-site. We also examine the energies of a number of thermal and optical transitions involving Mn⁴⁺, O⁻ and La⁴⁺ in the LaMnO₃ lattice. For these calculations we derive a phenomenological value for the second electron affinity of oxygen in LaMnO₃ lattice by matching the optical energies of La⁴⁺ and O⁻ hole formation with maxima of binding energies in the experimental photoemission spectra. The calculated thermal energies (one part of the self-trapping energy) predict that the electronic hole is marginally more stable in the Mn⁴⁺ state of the LaMnO₃ host lattice, but the energy of a hole in the O⁻ state is only higher by a small amount, 0.75 eV, rather suggesting that both possibilities should be treated seriously.

^{*}This work was supported by the Royal Society/NATO